Abstract

Fractured reservoirs contain a large proportion of hydrocarbon reserves in the Middle East. In these types of reservoirs, a variety of fracture types and networks provide the required permeability for hydrocarbon storage and flow. Fractured reservoir characterization has been challenging to petroleum geoscientists and reservoir engineers in terms of developing new approaches in this direction. A variety of techniques have been developed in the literature to study the distribution and the impact of fracture pore types on reservoir characterization. However, such techniques are not suitable for subsurface cases where prediction of fractures become troublesome and each of the developed techniques has its own advantages and limitations. In this study, an integrated approach is proposed for fracture characterization by employing different sources of data including 3D seismic attributes, geomechanical parameters, unconventional logs (image log and nuclear magnetic response (NMR) log), velocity-deviation log (VDL), conventional well logs, and routine core analysis data. Based on the azimuths of horizontal principal stresses and natural fractures, location of the wells over the structure hanging wall is determined. Interpretation of the seismic profiles from the study area indicated a fault-related fold structure style with fault throws controlling the magnitude of curvature. Moreover, fracture distribution of the Asmari reservoir is predicted by using curvature attribute, geomechanical parameters and horizontal slices of VDL. It seems that fractures probably have a much higher distribution at zone 1 and zone 3 of the Asmari formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call