Abstract

ABSTRACTFracture tests have been carried out on micro-sized specimens prepared from a fully lamellar γ-TiAl based alloy thin foil. Micro cantilever beam type specimens with dimensions = 50 × 10 × 20 μm were prepared from one lamellar colony of the thin foil by focused ion beam machining. Notches with a width of 0.5 μm and a depth of 10 μm were also introduced into the micro-sized specimens by focused ion beam machining. Notch directions were introduced into samples in order to select the trans- and inter-lamellar directions, respectively. Fracture tests were carried out using a mechanical testing machine for micro-sized specimens. Fracture tests for the micro-sized specimens were performed successfully, showing the fracture behaviour to be dependent upon the notch orientation. The fracture toughness of specimens with a notch direction perpendicular to the lamellar direction was 4.7 – 6.9 MPam1/2, while that with a notch direction in the inter-lamellar direction was 1.4 – 2.7 MPm1/2. This indicates that the orientation of the lamellar microstructure greatly affects the fracture properties of micro-sized components prepared from fully lamellar γ-TiAl based alloy thin foils. It is required to consider the results obtained in this investigation when designing actual micro scale structures using TiAl thin foils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.