Abstract

The purpose of this study was to analyze the fracture resistance and marginal leakage of noncarious cervical lesion (NCCL) restorations made of different restorative materials. Eighty upper premolars were randomly divided into four groups (n = 20/group). Standardized NCCL cavity preparations were performed on the buccal surface of the teeth and then restored with four different materials. Group 1: Packable resin composite (PC); Group 2: Highly flowable resin composite (HF); Group 3: Low flowable resin composite (LF); Group 4: Resin modified glass ionomer cement (RMGIC). After restorations were completed, cyclic and static fracture behavior was evaluated using a loading testing machine. Extra restored teeth were sectioned and then stained (n = 5/group). The specimens were viewed under a stereo microscope and the percentage of microgaps at the tooth–restoration interface was calculated. All restored teeth survived after fatigue loading. There was no statistically significant (p > 0.05) difference between the tested restorations after the static loading test. NCCLs restored with highly filled flowable composite showed the least microleakage among the tested groups (p < 0.05). The investigated restorative materials are acceptable for NCCL restorations in terms of fracture resistance and microleakage.

Highlights

  • A noncarious cervical lesion (NCCL) is defined as the loss of tooth structure at the cementoenamel junction (CEJ) that is not related to bacteria [1,2]

  • This study intended to analyze the fracture behavior and microleakage of different cervical restorations used for restoring NCCLs

  • We concluded that the investigated restorative materials withstood accelerated dynamic loading conditions when used for restoring NCCLs

Read more

Summary

Introduction

A noncarious cervical lesion (NCCL) is defined as the loss of tooth structure at the cementoenamel junction (CEJ) that is not related to bacteria [1,2]. The etiology of NCCLs is considered to be multifactorial, with the proposed predisposing factors being stress (abfraction), mechanical wear (from toothbrush/dentifrice abrasion) and biocorrosion (chemical degradation) [3,4]. According to the current literature, the worldwide prevalence of NCCLs is 46.7% among adults [5]. It is important to note that the prevalence and the severity of NCCLs shows an increase with age [5,6]. Given that a stressful life and increased life expectancy both characterize modern western societies, the prevalence of NCCLs is expected to rise considerably in the future [8]. Successfully restoring NCCLs remains a challenge [6,7,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call