Abstract
A two-parameter fracture criterion has been derived which relates the linear-elastic stress-intensity factor at failure, the elastic nominal failure stress, and two material parameters. The fracture criterion was used previously to analyze fracture data for surface- and through-cracked sheet and plate specimens under tensile loading. In the present paper the fracture criterion was applied to center-crack tension, compact, and notch-bend fracture specimens made of steel, titanium, or aluminum alloy materials tested at room temperature. The fracture data included a wide range of crack lengths, specimen widths, and thicknesses. The materials analyzed had a wide range of tensile properties. Failure stresses calculated using the criterion agreed well (± 10 percent) with experimental failure stresses. The criterion was also found to correlate fracture data from different specimen types (such as center-crack tension and compact specimens), within ± 10 percent for the same material, thickness, and test temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.