Abstract

Motivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector U(1) gauge theories. The fracton order and restricted mobility emerge as a result of an unusual Gauss law where electric field lines of one gauge field act as sources of charge for others. At low energies this vector gauge theory reduces to the previously studied fractonic symmetric tensor gauge theory. We construct the corresponding lattice model and a number of generalizations, which realize fracton phases via a condensation of stringlike excitations built out of charged particles, analogous to the p-string condensation mechanism of the gapped X-cube fracton phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.