Abstract
The molecular basis of radiotherapy-related multidrug resistance (MDR) is still unclear. Here we report on a study investigating the effect of fractionated irradiation on expression of the MDR-associated proteins P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), and lung resistance-related protein (LRP), the respective mRNAs, and the functional consequences. Cells of six colon and five breast cancer cell lines were irradiated with a total dose of 27 Gy, five fractions of 1.8 Gy per week. The mRNA expression was measured by quantitative RT-PCR, protein levels and drug sensitivity to cisplatin, doxorubicin and bendamustine were assessed by flow cytometry. Breast cancer cell lines showed enhancement of the mRNAs encoding for P-gp, MRP1 and LRP in comparison to nonirradiated cells. No up-regulation of the three mRNA species was observed in the colon cancer cell lines. After irradiation, three breast cancer cell lines showed an up-regulation of LRP, one line an up-regulation of MRP1, and four lines a small up-regulation of P-gp. In the colon cancer cell lines, radiation induced significant enhancement of all three proteins. In comparison to controls, the irradiated cells lines showed a significant resistance to cisplatin, doxorubicin and bendamustine. This study confirms the prior reports of enhancement of P-gp and MRP1 after irradiation, which is accompanied by a multidrug resistance phenomenon, but in addition proposes a novel mechanism in the appearance of MDR after radiation-induced enhancement of LRP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.