Abstract

In order to understand and overcome multidrug resistance (MDR) of human non-small cell lung cancer (NSCLC), mRNA and protein expression levels of P-glycoprotein (MDR1), multidrug resistance-associated protein 1 (MRP1), and lung resistance-related protein (LRP) were investigated and compared with the chemosensitivity and the intracellular/intranuclear cisplatin accumulation of three NSCLC cell lines (Ma-10, Ma-31, and Ma-46). Ma-31 was more resistant than Ma-10 and Ma-46 to cisplatin, carboplatin, etoposide, and paclitaxel. The mRNA level of MDR1 was extremely low, and MDR1 protein was not detected in all cell lines. MRP1 mRNA expression was highest in Ma-31 and lowest in Ma-10, but there was no notable difference between the MRP1 protein expression in three cell lines. LRP mRNA/protein was equally expressed in Ma-10 and Ma-31, but was nominal in Ma-46. The intracellular/intranuclear cisplatin accumulation of the cells was determined to be Ma-31>Ma-46>Ma-10. Thus, MDR1, MRP1, and LRP mRNA and protein expression levels were not correlated with the chemosensitivity or the intracellular/intranuclear cisplatin accumulation of each cell line. The present results indicate that MDR proteins (MDR1, MRP1, and LRP) may not play an important role in the chemoresistance and drug efflux of NSCLC cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.