Abstract
Deep learning can remove the noise of the terahertz (THz) spectrum via its powerful feature extraction ability. However, this technology suffers from several limitations, including clean training data being difficult to obtain, the amount of training data being small, and the restored effect being unsatisfactory. In this paper, a novel THz spectrum denoising method is proposed. Low-quality underwater images and transfer learning are used to alleviate the limitation of the training data amount. Then, the principle of Noise2Noise is applied to further reduce the limitations of clean training data. Moreover, a THz denoising network based on Transformer is proposed, and fractional variation is introduced in the loss function to improve the denoising effect. Experimental results demonstrate that the proposed method estimates the high-quality THz spectrum in simulation and measured data experiments, and it also has a satisfactory result in THz imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.