Abstract
Broadband terahertz (THz) emission generated from laser induced gas plasma provides an effective tool for studying nonlinear spectrum, imaging and remote sensing. Recently, the contribution of plasma oscillation to the THz emission was revealed from the nitrogen molecules pumped by intense two-color laser pulses. Plasma oscillation contributes only to the THz emission at relatively low plasma density due to negligible plasma absorption. More generally, with the THz emission generated from the ionizing gaseous medium, the surrounding plasma is expected to play an important role in the generation process. For the THz radiation from laser filament, the plasma region is extended in the laser propagation direction, and the effect of surrounding plasma on the emitted THz spectrum needs studying. In this work, we investigate the relation between pump power and filament length from THz spectrum emitted by air filament driven by two-color laser pulse. The time domain spectrum of THz field is recorded by an electro-optic (EO) sampling technique. In our experiments, significant frequency shifts are observed as the pump power and the filament length increase, and we find that the center frequency of the THz radiation is shifted towards longer wavelength, which is the so called red-shift of the THz spectrum. This red-shift is independent of THz radiation angle. The observations are explained by the plasma absorption inside the air filament. Our theoretical model is based on three mechanisms: the ionization-induced photocurrent, the plasma current oscillation and the plasma absorption. We coherently add up all the local THz fields inside the air filament, and simultaneously consider the plasma absorption induced correction of the THz spectrum. The simulation well reproduces the experimental observation. The skin depth decreases as the plasma density increases, thus the plasma absorption dominates the red-shift process. If the skin depth is larger than the filament length, the plasma oscillation contributes to the THz spectrum dominantly, and thus leading to the blue-shift of THz spectrum. Our results indicate that for the extended filament length or higher plasma density, the combining effect of photocurrent, plasma oscillation and absorption, results in the observed low-frequency broadband THz spectrum. Our study offers a method of coherently controlling the broadband THz spectrum.
Highlights
In this work, we investigate the relation between pump power and filament length from THz spectrum emitted by air filament driven by two-color laser pulse
In our experiments, significant frequency shifts are observed as the pump power and the filament length increase, and we find that the center frequency of the THz radiation is shifted towards longer wavelength, which is the so called red-shift of the THz spectrum
Our results indicate that for the extended filament length or higher plasma density, the combining effect of photocurrent, plasma oscillation and absorption, results in the observed low-frequency broadband THz spectrum
Summary
THz 脉冲在电光晶体 GaP 上重合, 利用电光采样 方法测量得到 THz 辐射的时域波形. 实验首先测量了不同的驱动光功率下双色激 光场激发空气等离子体产生 THz 辐射的时域光谱, 如图 2(a) 和 (b) 所示. 分别为峰值功率 25 GW 与 75 GW 时测量到的时域波形和对应的频谱. 当驱 动光功率变化时, THz 光谱的中心频率发生明显 的移动. 为了进一步观察 THz 光谱随驱动光功率 的变化规律, 我们测量了峰值功率从 18 GW 增加 至 62 GW 时一系列的 THz 波形, 并提取出对应的 中心频率. 如图 2(c) 所示, 随着驱动光功率的增 强, THz 频谱往低频方向移动, 红移量约为 0.3 THz. 该实验结果与在较高背压时喷气靶条件下的结果 相似 [22]. THz 脉冲在电光晶体 GaP 上重合, 利用电光采样 方法测量得到 THz 辐射的时域波形. 实验首先测量了不同的驱动光功率下双色激 光场激发空气等离子体产生 THz 辐射的时域光谱, 如图 2(a) 和 (b) 所示. 分别为峰值功率 25 GW 与 75 GW 时测量到的时域波形和对应的频谱. 为了进一步观察 THz 光谱随驱动光功率 的变化规律, 我们测量了峰值功率从 18 GW 增加 至 62 GW 时一系列的 THz 波形, 并提取出对应的 中心频率. 如图 2(c) 所示, 随着驱动光功率的增 强, THz 频谱往低频方向移动, 红移量约为 0.3 THz. 该实验结果与在较高背压时喷气靶条件下的结果 相似 [22]. 已有研究表明, 相位匹配条件下不同频率的 THz 辐射具有不同前向角分布特征 [23]. 为了检测 这一角度分布, 将光阑置于两个抛物面反射镜之 间, 如图 1 所示. 实验上测量了在驱动光功率为 45 GW 时, THz 频率分别为 1 THz 与 3 THz 时的角度分布, 如图 3(a) 所示, 可以看出, 频率越高, 辐射角则越 小. 我们还测量当辐射收集角度分别为 4°, 5°时, THz 光谱的中心频率随驱动光功率的变化, 实验 结果如图 3(b) 所示, 可以看出, 驱动光功率越高, THz 辐射整体的锥形辐射角越小, 即随着驱动光 功率增加, THz 辐射反而越集中. 已有研究表明, 相位匹配条件下不同频率的 THz 辐射具有不同前向角分布特征 [23]. 为了检测 这一角度分布, 将光阑置于两个抛物面反射镜之 间, 如图 1 所示. 通过改变光阑大小来控制测量收 集角度. 实验上测量了在驱动光功率为 45 GW 时, THz 频率分别为 1 THz 与 3 THz 时的角度分布, 如图 3(a) 所示, 可以看出, 频率越高, 辐射角则越 小. 我们还测量当辐射收集角度分别为 4°, 5°时, THz 光谱的中心频率随驱动光功率的变化, 实验 结果如图 3(b) 所示, 可以看出, 驱动光功率越高, THz 辐射整体的锥形辐射角越小, 即随着驱动光 功率增加, THz 辐射反而越集中. 表明等离子体密
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.