Abstract

Petrochemical and dairy industries, waste management, and paper manufacturing fall under the category of process industries where flow and liquid control are essential. Even when liquids are mixed or chemically treated in interconnected tanks, the fluid and flow should constantly be observed and controlled, especially when dealing with nonlinearity and imperfect plant models. In this study, we propose a nonlinear dynamic multiple-input multiple-output (MIMO) plant model. This model is then transformed through linearization, a technique frequently utilized in the analysis and modeling of fractional processes, and decoupling for decentralized fixed-structure H-infinity robust control design. Simulation tests based on MATLAB and SIMULINK are subsequently executed. Numerous assessments are conducted to evaluate tracking performance, external disturbance rejection, and plant parameter fluctuations to gauge the effectiveness of the proposed model. The objective of this work is to provide a framework that anticipates potential outcomes, paving the way for implementing a reliable controller synthesis for MIMO-connected tanks in real-world scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.