Abstract
In this paper, it is shown numerically that a class of fractional-order piece-wise continuous systems, which depend on a single real bifurcation parameter, have no zero Lyapunov exponents but can be chaotic or hyperchaotic with hidden attractors. Although not analytically proved, this conjecture is verified on several systems including a fractional-order piece-wise continuous hyperchaotic system, a piece-wise continuous chaotic Chen system, a piece-wise continuous variant of the chaotic Shimizu-Morioka system and a piece-wise continuous chaotic Sprott system. These systems are continuously approximated based on results of differential inclusions and selection theory, and numerically integrated with the Adams-Bashforth-Moulton method for fractional-order differential equations. It is believed that the obtained results are valid for many, if not most, fractional-order PWC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.