Abstract

In this article, a general formulation for the fractional-order Legendre functions (FLFs) is constructed to obtain the solution of the fractional-order differential equations. Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. Therefore, an efficient and reliable technique for the solution of them is too important. For the concept of fractional derivative we will adopt Caputo’s definition by using Riemann–Liouville fractional integral operator. Our main aim is to generalize the new orthogonal functions based on Legendre polynomials to the fractional calculus. Also a general formulation for FLFs fractional derivatives and product operational matrices is driven. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.