Abstract

This paper aims to construct a general formulation for the Jacobi operational matrix of fractional integral operator. Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. Therefore, a reliable and efficient technique for the solution of them is too important. For the concept of fractional derivative we will adopt Caputo’s definition by using Riemann–Liouville fractional integral operator. Our main aim is to generalize the Jacobi integral operational matrix to the fractional calculus. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.