Abstract
Different from a Newtonian fluid, couple stress uid (CSF) includes a new material constant, which is responsible for couple stress and the lubricant viscosity. This material constant comes with the fourth-order spatial derivative term, and due to this higher-order derivative term in the momentum equation, this uid (CSF) is comparatively less investigated even for the classical uid problems. This paper aims to study the fractional model of CSF, based on the Atangana-Baleanu (AB) fractional derivatives de nition. Since this AB de nition is new, therefore, for the sake of comparison and correctness, this problem is also solved using the Caputo-Fabrizio (CF) fractional derivative de nition. The CSF is considered to flow between two parallel plates, one of which is at rest and the other is moving with constant velocity. The external pressure gradient is also applied. This type of ow situations is usually called generalized Couette ow. The problem is rst written in dimensionless form and then solved for the exact solution using the Laplace transform and the nite Fourier sine transform. The CSF velocity obtained via an AB fractional derivative is compared with the CSF velocity obtained via a CF fractional derivative approach, and the results obtained are shown graphically. The CSF results for interesting uid parameters are displayed in various graphs for both the AB and CF fractional derivatives. It is observed that the CSF velocities obtained with the AB and CF fractional derivatives are the same for unit time. For time less than one and greater than one, variation in CSF velocities is observed. In limiting sense, the present CSF solutions are reduced to a similar Newtonian uid problem solution in the absence of external pressure gradient.
Highlights
Couple-stress fluids (CSF) contain a new material constant which makes them different from usual viscous fluids
CONCLUDING REMARKS The new idea of Atangana–Baleanu fractional derivative has been applied for the first time to Couple Stress Fluid flow between two parallel plates under the effect of the external pressure gradient
CF derivatives solutions are provided for the sake of comparison and verification of the new scheme of AB for CSF
Summary
Couple-stress fluids (CSF) contain a new material constant which makes them different from usual viscous fluids. References [33]–[36] Due to these applications researchers are attracted to investigate different phenomena using fractional calculus and fractional order derivatives. Sadiq et al [39] studied some rotational flow of second grade fluid with Caputo-Fabrizio fractional derivative in an Annulus Al-Salti et al [40], investigated the boundary-value problem for fractional heat equation involving Caputo-Fabrizio derivative. The concept of AB and CF fractional derivatives is applied by Nadeem et al [43], to investigate a Casson fluid model with the combined effect of heat generation and chemical reaction. Akhtar and Shah [44], discussed exact solutions for some unsteady flows of a couple of stress fluid between parallel plates. The effect of various parameters is investigated on the fluid flow using different graphs
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have