Abstract

Mathematical Oncology investigates cancer-related phenomena through mathematical models as comprehensive as possible. Accordingly, an interdisciplinary approach involving concepts from biology to materials science can provide a deeper understanding of biological systems pertaining the disease. In this context, fractional calculus (also referred to as non-integer order) is a branch in mathematical analysis whose tools can describe complex phenomena comprising different time and space scales. Fractional-order models may allow a better description and understanding of oncological particularities, potentially contributing to decision-making in areas of interest such as tumor evolution, early diagnosis techniques and personalized treatment therapies. By following a phenomenological (i.e. mechanistic) approach, the present study surveys and explores different aspects of Fractional Mathematical Oncology, reviewing and discussing recent developments in view of their prospective applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.