Abstract

Even though, nowadays, cancer is one of the leading causes of death, too little is known about the behavior of this disease due to its unpredictability from one patient to another. Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, improvements are still necessary on these models. The primary objective of the present research is to prove the efficiency of fractional order calculus in mathematical oncology, more specifically in tumor growth modeling. For this, a generalization of the four most used differential equation models in tumor volume measurements fitting is realized, using the corresponding fractional order equivalent. Are established the fractional order Exponential, Logistic, Gompertz, General Bertalanffy-Pütter and Classical Bertalanffy-Pütter models for a treated and untreated dataset. The obtained results are compared by Mean Squared Error (MSE) with the integer order correspondent of each model. The results prove the superiority of the fractional order models. The MSE of fractional order models are reduced at least at half in comparison with the MSE of the integer order equivalent. It is demonstrated in this way that fractional order deterministic models can offer a good starting point in finding a proper mathematical model for tumor evolution prediction. Fractional calculus is a suitable method in this case due to its memory property, aspect that particularly characterizes biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.