Abstract

The diffusion process plays a crucial role in various fields, such as fluid dynamics, microorganisms, heat conduction and food processing. Since molecular diffusion usually takes place in complex materials and disordered media, there still exist many challenges in describing the diffusion process in the real world. Fractional calculus is a powerful tool for modelling complex physical processes due to its non-local property. This research generalises a fractional diffusion model by using the distributed-order operator in time and the Riesz fractional derivative in space. Moreover, variable diffusion coefficients are introduced to better capture the diffusion complexity. The fractional diffusion model is discretised by the finite element method in space. The approximation of the distributed-order operator is implemented by Simpson’s rule and the L2-1σ formula. A numerical example is provided to verify the effectiveness of the proposed numerical methods. This generalised fractional diffusion model may offer more insights into characterising diffusion behaviours in complex and disordered media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call