Abstract
The Concurrent Reduced Memory Access method (CRMA) is a scalable memory-efficient Monte Carlo method for computing the lineal path function. It addresses an inherent memory bottleneck of lineal path function algorithms by utilising known properties of the two-point correlation function to reduce the number of voxels where the phase value must be evaluated. The CRMA method reduces the computation time and improves the scalability characteristics of the traditional lineal path function Monte Carlo methods. CRMA also provides additional information useful for analysing microstructures since the two-point correlation function is computed as part of the method. The CRMA method offers an efficient, scalable and extendable solution for computing the lineal path function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.