Abstract

Two-dimensional random Lorentz gases with absorbing traps are considered in which a moving point particle undergoes elastic collisions on hard disks and annihilates when reaching a trap. In systems of finite spatial extension, the asymptotic decay of the survival probability is exponential and characterized by an escape rate γ, which can be related to the average positive Lyapunov exponent and to the dimension of the fractal repeller of the system. For infinite systems, the survival probability obeys a stretched exponential law of the form P( c, t)∼exp(− Ct 1/2). The transition between the two regimes is studied and we show that, for a given trap density, the non-integer dimension of the fractal repeller increases with the system size to finally reach the integer dimension of the phase space. Nevertheless, the repeller remains fractal. We determine the special scaling properties of this fractal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.