Abstract

Studying mining fracture development is vital for geotechnical and mining engineering and geological disaster prevention. This research assesses crack effects on rock mass stress equilibrium during coal mining, potentially causing geological disasters such as land subsidence and landslides. Using fractal geometry theory, the present study investigates the development of horizontal and vertical mining cracks, revealing their propagation patterns. The fractal dimension generally increases as the propulsion distance increases; however, fluctuations vary from 250 to 287.5 m, forming a wavering line chart. The proportion of mining fracture area relative to mining space area increases with greater propulsion distance, indicating expanded upward mining space due to separation layers. The horizontal distribution of mining cracks persists, while the vertical distribution decreases, suggesting ground subsidence results from upward transmission. The fastest increase in fractal dimension occurs at 87.5–100 m. At 250 m, it peaks at 1.4136, indicating complex crack structures. During propulsion, the fractal dimension decreases due to upward mining space expansion through overlying rock layer collapse, forming new cracks. The proportion of mining crack area to mining space area increases gradually throughout the mining process. The present study presents a simulation model for crack identification, noting limitations in identifying tiny cracks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call