Abstract
We numerically investigate the electric potential distribution over a two-dimensional continuum percolation model between the electrodes. The model consists of overlapped conductive particles on the background with an infinitesimal conductivity. Using the finite difference method, we solve the generalized Laplace equation and show that in the potential distribution, there appear quasi-equipotential clusters which approximately and locally have the same values as steps and stairs. Since the quasi-equipotential clusters have the fractal structure, we compute the fractal dimension of equipotential curves and its dependence on the volume fraction over [0,1]. The fractal dimension in [1.00, 1.246] has a peak at the percolation threshold pc.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have