Abstract

Recent quantitative approaches for studying several aspects of urban life and infrastructure have shown that scale properties allow the understanding of many features of urban infrastructure and of human activity in cities. In this paper, we show that COVID-19 virus contamination follows a similar pattern in different regions of the world. The superlinear power-law behavior for the number of contamination cases as a function of the city population, with exponent β of the order of 1.15 is always obtained. Due to the strong indication that scaling is a determinant feature of covid-19 spread, we propose an epidemiological model that embodies a fractal structure, allowing a more detailed description of the observed data about the virus spread in different countries and regions. The hypothesis that fractal structures can be formed in cities as well as in larger networks is tested, indicating that indeed self-similarity may be found in networks connecting several cities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.