Abstract
Abstract Fractal analysis techniques have been applied to the concentration fields from large-eddy simulations of plume dispersion in a turbulent boundary layer. Fractal dimensions between 1.3 and 1.35 are obtained from area-perimeter and box-counting analyses for neutral and convective conditions. These values are close to previous estimates from atmospheric data. Methods for generating fractal fields with given statistical moments are examined and the simplest of these, the recursive refinement technique, is shown to be inadequate. The problem is shown to be the interpolation step of the procedure, which intrinsically reduces the variance with each refinement. Accurate statistical representation is obtained by replacing the interpolation step of the refinement technique with a sum of random pulses of appropriate width and random location. The pulse technique can easily he adapted to generate either clipped-normal or lognormal one-point probability distributions. Results from the fractal generation techn...
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.