Abstract

In recent years many deterministic parabolic equations have been shown to possess global attractors which, despite being subsets of an infinite-dimensional phase space, are finite-dimensional objects. Debussche showed how to generalize the deterministic theory to show that the random attractors of the corresponding stochastic equations have finite Hausdorff dimension. However, to deduce a parametrization of a ‘finite-dimensional’ set by a finite number of coordinates a bound on the fractal (upper box-counting) dimension is required. There are non-trivial problems in extending Debussche's techniques to this case, which can be overcome by careful use of the Poincaré recurrence theorem. We prove that under the same conditions as in Debussche's paper and an additional concavity assumption, the fractal dimension enjoys the same bound as the Hausdorff dimension. We apply our theorem to the 2d Navier–Stokes equations with additive noise, and give two results that allow different long-time states to be distinguished by a finite number of observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.