Abstract

Surface roughness determined qualitatively by direct visualization can be correlated to several physical properties. However, finding a suitable method of quantifying surface roughness, until recently, has been difficult. The concept of Fractal Dimension, recently popularized by Mandelbrot(1982) has been extremely successful in quantifying surface roughness and relating it to such measurable physical properties such as; cleanability, catalytic activity, rate of corrosion, and even flavor.Atomic Force Microscopes permit direct three dimensional measurements of surface microstructure. AFM images are obtained by measuring the motion of a sharp stylus as it is scanned across a surface. Because the AFM directly measures three dimensional topograms, it is ideally suited for two dimensional and three dimensional fractal analysis. Other microscope techniques such as the scanning electron or optical microscope give only two dimensional magnification and fractal measurements are not easily made.The Atomic Force Microscope enables us to obtain the fractal dimension of surface profiles as well as surface areas. For surface profiles we use a box counting method (Mandelbrot 1986, Chesters et al. 1989).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call