Abstract

In research and development, the most emerging field in digital signal processing and image processing is rounded-based approximated signed and unsigned multipliers. In the present research, we propose some cutting-edge, Preformation, and logic simplification technology connected to processing the Discrete cosine transform (DCT) and Discrete wavelet transform (DWT) images for sharpening. This technology will yield a truncated shifter incorporated with logical XOR-MUX Full adder techniques. A reliable and cost-effective approximate signed and unsigned multiplier was created for the rounding method. While this more advanced technology includes many approximate multipliers, it sacrifices the ability to find the closest integer of a rounded value when combining signed and unsigned capabilities, resulting in higher absolute errors than other approximate multipliers based on rounding. This proposed work will introduce a novel method of Truncated Shifter Rounding-based Approximate Multiplier integrated with a High-Level Synchronous XOR-MUX Full Adder design to minimize the number of logic gates and power consumption in the multiplier architecture. The Truncated RoBA (Rounding-based Approximate Multiplier) with XOR MUX Full Adder will reduce the logic size in the shifter and the arithmetic circuit. The work will modify this rounding-based approximate multiplier to minimize area, delay, and power consumption. This proposed architecture will be integrated with two fundamental changes: firstly, its Barrel shifter method will be replaced with a truncated shifter multiplier with XOR MUX Full Adder, and secondly, the parallel prefix Brent Kung adder will be replaced with a carrying-save adder with XOR MUX Full Adder. Finally, this architecture was designed using Verilog-HDL and synthesized using the Xilinx Vertex-5 FPGA family, targeting the device Xc7Vx485tFFg1157-1. It resulted in a reduction of area LUT (34%), power (1%), delay (32%), and error analysis (75%) when compared to the existing RoBA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call