Abstract

A novel field programmable gate array (FPGA) implementation of adaptive segmentation for non-stationary biomedical signals is presented. The design uses Simulink-to-FPGA methodology and has been successfully implemented onto Xilinx Virtex II Pro device. The implementation is based on the recursive least-squares lattice (RLSL) algorithm using double-precision floating-point arithmetic and is programmable for users providing data length, system order and threshold selection functions. The implemented RLSL design provides very good performance in obtaining accurate conversion factor values with a mean correlation above 99% and detecting segment boundaries with high accuracy for both synthesised and real-world biomedical signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.