Abstract
In wireless sensor networks (WSNs), location or distance estimation information for the elderly is a critical issue. This study aims to improve the error in estimated distance between the anchor node and mobile node, which is carried by an elderly person while moving in an indoor environment. The distance between the mobile node and the anchor node was determined based on the measured received signal strength indicator (RSSI) of the anchor nodes and the artificial neural network (ANN). The ANN was implemented into a field programmable gate array (FPGA) so that it could be used in a real-world application. The hardware implementation of the FPGA was executed based on Xilinx (Virtex7). The results revealed that an accurate estimate of the distance error was obtained based on the ANN. The distance error in terms of mean absolute error was 0.019 m for training, 0.07 m for testing, and 0.19 m for validation. In addition, the estimated distances obtained from the FPGA were fully compatible with the actual distances. Moreover, the distance estimation error-based ANN outperformed other existing algorithms and soft computing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.