Abstract

Modern data-intensive applications demand high computation capabilities with strict power constraints. Unfortunately, such applications suffer from a significant waste of both execution cycles and energy in current computing systems due to the costly data movement between the computation units and the memory units. Genome analysis and weather prediction are two examples of such applications. Recent FPGAs couple a reconfigurable fabric with high-bandwidth memory (HBM) to enable more efficient data movement and improve overall performance and energy efficiency. This trend is an example of a paradigm shift to near-memory computing. We leverage such an FPGA with high-bandwidth memory (HBM) for improving the pre-alignment filtering step of genome analysis and representative kernels from a weather prediction model. Our evaluation demonstrates large speedups and energy savings over a high-end IBM POWER9 system and a conventional FPGA board with DDR4 memory. We conclude that FPGA-based near-memory computing has the potential to alleviate the data movement bottleneck for modern data-intensive applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.