Abstract
The relentless increase in data volume and complexity necessitates advancements in machine learning methodologies that are more adaptable. In response to this challenge, we present a novel architecture enabling dynamic classifier selection on FPGA platforms. This unique architecture combines hardware accelerators of three distinct classifiers—Support Vector Machines, K-Nearest Neighbors, and Deep Neural Networks—without requiring the combined area footprint of those implementations. It further introduces a hardware-based Accelerator Selector that dynamically selects the most fitting classifier for incoming data based on the K-Nearest Centroid approach. When tested on four different datasets, Our architecture demonstrated improved classification performance, with an accuracy enhancement of up to 8% compared to the software implementations. Besides this enhanced accuracy, it achieved a significant reduction in resource usage, with a decrease of up to 45% compared to a static implementation making it highly efficient in terms of resource utilization and energy consumption on FPGA platforms, paving the way for scalable ML applications. To the best of our knowledge, this work is the first to harness FPGA platforms for dynamic classifier selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.