Abstract

Multiple Classifier Systems (MCS) have been widely studied as an alternative for increasing accuracy in pattern recognition. One of the most promising MCS approaches is Dynamic Selection (DS), in which the base classifiers are selected on the fly, according to each new sample to be classified. This paper provides a review of the DS techniques proposed in the literature from a theoretical and empirical point of view. We propose an updated taxonomy based on the main characteristics found in a dynamic selection system: (1) The methodology used to define a local region for the estimation of the local competence of the base classifiers; (2) The source of information used to estimate the level of competence of the base classifiers, such as local accuracy, oracle, ranking and probabilistic models, and (3) The selection approach, which determines whether a single or an ensemble of classifiers is selected. We categorize the main dynamic selection techniques in the DS literature based on the proposed taxonomy. We also conduct an extensive experimental analysis, considering a total of 18 state-of-the-art dynamic selection techniques, as well as static ensemble combination and single classification models. To date, this is the first analysis comparing all the key DS techniques under the same experimental protocol. Furthermore, we also present several perspectives and open research questions that can be used as a guide for future works in this domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.