Abstract

This paper presents a high throughput digital design of the 128-bit Advanced Encryption Standard (AES) algorithm based on the 2-slow retiming technique on FPGA. The C-slow retiming is a well-known optimization and high performance technique. It can enhance designs with feedback loops and automatically rebalances the registers in the design. The C-slow retiming can break the critical path of the design into finer pieces to improve the throughput of the design. The complexity of the C-slow retiming on FPGA is to find the best register allocation in the data path of the design so that by increasing the number of registers, relocation of the registers to balance the AES architecture be in the best mode, and the critical path be optimally pipelined and improved. In this paper, architecture of the AES algorithm is implemented in the gate level by high-speed and breakable structures that are desirable for the 2-slow retiming. The Mix-columns transformation is implemented based on multiplication by constants 2 and 3 modules with combinational logic circuits. This work has been successfully verified and synthesized using Xilinx ISE 11 byVirtex-5, XC5VLX85 FPGA. The proposed implementation achieves a high throughput of 86Gb/s and high maximum operation frequency of 671.524MHz whereas the highest throughput and the highest operation frequency reported in the literature are 73.737Gb/s and 576.07MHz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.