Abstract

Quantum Monte Carlo methods enable us to determine the ground-state properties of atomic or molecular clusters. Here, we present a reconfigurable computing architecture using Field Programmable Gate Arrays (FPGAs) to accelerate two computationally intensive kernels of a Quantum Monte Carlo (QMC) application applied to N-body systems. We focus on two key kernels of the QMC application: acceleration of potential energy and wave function calculations. We compare the performance of our application on two reconfigurable platforms. Firstly, we use a dual-processor 2.4 GHz Intel Xeon augmented with two reconfigurable development boards consisting of Xilinx Virtex-II Pro FPGAs. Using this platform, we achieve a speedup of 3× over a software-only implementation. Following this, the chemistry application is ported to the Cray XD1 supercomputer equipped with Xilinx Virtex-II Pro and Virtex-4 FPGAs. The hardware-accelerated application on one node of the high performance system equipped with a single Virtex-4 FPGA yields a speedup of approximately 25× over the serial reference code running on one node of the dual-processor dual-core 2.2 GHz AMD Opteron. This speedup is mainly attributed to the use of pipelining, the use of fixed-point arithmetic for all calculations and the fine-grained parallelism using FPGAs. We can further enhance the performance by operating multiple instances of our design in parallel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call