Abstract
Quantum Monte Carlo methods enable us to determine the ground-state properties of atomic or molecular clusters. Here, we present a reconfigurable computing architecture using Field Programmable Gate Arrays (FPGAs) to accelerate two computationally intensive kernels of a Quantum Monte Carlo (QMC) application applied to N-body systems. We focus on two key kernels of the QMC application: acceleration of potential energy and wave function calculations. We compare the performance of our application on two reconfigurable platforms. Firstly, we use a dual-processor 2.4 GHz Intel Xeon augmented with two reconfigurable development boards consisting of Xilinx Virtex-II Pro FPGAs. Using this platform, we achieve a speedup of 3× over a software-only implementation. Following this, the chemistry application is ported to the Cray XD1 supercomputer equipped with Xilinx Virtex-II Pro and Virtex-4 FPGAs. The hardware-accelerated application on one node of the high performance system equipped with a single Virtex-4 FPGA yields a speedup of approximately 25× over the serial reference code running on one node of the dual-processor dual-core 2.2 GHz AMD Opteron. This speedup is mainly attributed to the use of pipelining, the use of fixed-point arithmetic for all calculations and the fine-grained parallelism using FPGAs. We can further enhance the performance by operating multiple instances of our design in parallel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.