Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to the pathogenesis of systemic lupus erythematosus (SLE), in part due to promoting the survival of plasma cells. FoxO1 expression in monocytic MDSCs (M-MDSCs) exhibits a negative correlation with the SLE Disease Activity Index score. This study aimed to investigate the hypothesis that M-MDSC-specific FoxO1 deficiency enhances aberrant B cell function in aggressive SLE. We used GEO data sets and clinical cohorts to verify the clinical significance of FoxO1 expression and circulating M-MDSCs. Using Cre-LoxP technology, we generated myeloid FoxO1 deficiency mice (mFoxO1-/-) to establish murine lupus-prone models. The transcriptional stage was assessed by integrating chromatin immunoprecipitation (ChIP)-sequencing with transcriptomic analysis, luciferase reporter assay, and ChIP-quantitative polymerase chain reaction. Methylated RNA immunoprecipitation sequencing, RNA sequencing, and CRISPR-dCas9 were used to identify N6-adenosine methylation (m6A) modification. In vitro B cell coculture experiments, capmatinib intragastric administration, m6A-modulated MDSCs adoptive transfer, and sample validation of patients with SLE were performed to determine the role of FoxO1 on M-MDSCs dysregulation during B cell autoreacted with SLE. We present evidence that low FoxO1 is predominantly expressed in M-MDSCs in both patients with SLE and lupus mice, and mice with myeloid FoxO1 deficiency (mFoxO1-/-) are more prone to B cell dysfunction. Mechanically, FoxO1 inhibits mesenchymal-epithelial transition factor protein (Met) transcription by binding to the promoter region. M-MDSCs FoxO1 deficiency blocks the Met/cyclooxygenase2/prostaglandin E2 secretion pathway, promoting B cell proliferation and hyperactivation. The Met antagonist capmatinib effectively mitigates lupus exacerbation. Furthermore, alkB homolog 5 (ALKBH5) targeting catalyzes m6A modification on FoxO1 messenger RNA in coding sequences and 3' untranslated regions. The up-regulation of FoxO1 mediated by ALKBH5 overexpression in M-MDSCs improves lupus progression. Finally, these correlations were confirmed in untreated patients with SLE. Our findings indicate that effective inhibition of B cells mediated by the ALKBH5/FoxO1/Met axis in M-MDSCs could offer a novel therapeutic approach to manage SLE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.