Abstract

BackgroundFoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway. Binding of the forkhead domain (FHD) of FoxH1 to a highly conserved proximal sequence motif was shown to regulate target gene expression.ResultsWe identify the conserved microRNA-430 family (miR-430) as a novel target of FoxH1. miR-430 levels are increased in foxH1 mutants, resulting in a reduced expression of transcripts that are targeted by miR-430 for degradation. To determine the underlying mechanism of miR-430 repression, we performed chromatin immunoprecipitation studies and overexpression experiments with mutant as well as constitutive active and repressive forms of FoxH1. Our studies reveal a molecular interaction of FoxH1 with miR-430 loci independent of the FHD. Furthermore, we show that previously described mutant forms of FoxH1 that disrupt DNA binding or that lack the C-terminal Smad Interaction Domain (SID) dominantly interfere with miR-430 repression, but not with the regulation of previously described FoxH1 targets.ConclusionsWe were able to identify the distinct roles of protein domains of FoxH1 in the regulation process of miR-430. We provide evidence that the indirect repression of miR-430 loci depends on the connection to a distal repressive chromosome environment via a non-canonical mode. The widespread distribution of such non-canonical binding sites of FoxH1, found not only in our study, argues against a function restricted to regulating miR-430 and for a more global role of FoxH1 in chromatin folding.

Highlights

  • FoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway

  • We identified the microRNA-430 family (miR-430) loci as targets for NC interaction with FoxH1 and we show that this interaction is relevant for FoxH1 dependent miR-430 repression

  • Chromatin immunoprecipitation assay (ChIP)-seq and microarray revealed non-canonical FoxH1 regulation of miR-430 To gain insight into the function of FoxH1 during early embryonic development, we performed a combination of expression and ChIP-seq analysis on 6hpf epiboly-stage zebrafish embryos

Read more

Summary

Introduction

FoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway. Binding of the forkhead domain (FHD) of FoxH1 to a highly conserved proximal sequence motif was shown to regulate target gene expression. Gastrulation and formation of the three germ layers endoderm, mesoderm, and ectoderm are a key step in development from single-cell to multicellular organism. Dose-dependent signaling by the TGF-beta factor Nodal is central for germ layer induction and patterning. Throughout the vertebrate phylogeny, the loss of Nodal signaling leads to loss of endodermal and mesodermal cell fate [1,2,3]. A central step in Nodal signaling is the ligand-induced phosphorylation and subsequent nuclear translocation of Smad. CAN binding sites critical for mediating Nodal signals are further characterized

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.