Abstract

We calculate the four-wave mixing (FWM) in a Bose-Einstein condensate system having multiple spin wave packets that are initially overlapping in physical space, but have nonvanishing relative momentum that causes them to recede from one another. Three receding condensate atom wave packets can result in production of a fourth wave packet by the process of FWM due to atom-atom interactions. We consider cases where the four final wave packets are composed of one, two, three, and four different internal spin components. FWM with one or two-spin state wave packets is much stronger than three- or four-spin state FWM, wherein two of the coherent moving Bose-Einstein condensate wave packets form a spin-polarization grating that rotates the spin projection of the third wave into that of the fourth diffracted wave (as opposed to the one- or two-spin state case where a regular density grating is responsible for the diffraction). Calculations of FWM for $^{87}\mathrm{Rb}$ and $^{23}\mathrm{Na}$ condensate systems are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call