Abstract

The chaotic dynamic characteristic in Bose-Einstein Condensate (BEC) system of a 1D tilted optical superlattice potential with attractive interaction is investigated in this paper. The spatial evolution of chaos was shown numerically by resolving Gross-Pitaevskii (G-P) equation for the system with the fourth Runge-Kutta(RK) algorithm. Numerical analysis reveals that as the tilt or the amplitude of the optical superlattice potential is increased the chaos in the BEC system increases. These elements make the chaotic system more unstable and the phase-space orbit becomes more chaotic. The chaotic system can be effectively controlled to a stable periodic orbit through adjusting the amplitude of the optical superlattice potential and initial condition. Controlling chaos can also be realized by spatial constant bias in the BEC system of a 1D tilted optical superlattice potential with attractive interaction. Phase orbits are suppressed gradually then the chaotic states of the BEC system are converted into period one through quais-period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.