Abstract

Two high resolution methods solving inverse problems potentially ill-posed, named 4-MUSIC and 4-RapMUSIC, are proposed. They allow for localization of brain current sources with unconstrained orientations from surface electro-or magneto-encephalographic data using spherical or realistic head geometries. The 4-MUSIC and 4-RapMUSIC methods are based on i) the separability of the data transfer matrix as a function of location and orientation parameters and ii) the fourth order (FO) virtual array theory. In addition, 4-RapMUSIC uses the deflation concept extended to FO statistics accounting for the presence of potentially but not totally coherent sources. Computer results display the superiority of the 4-RapMUSIC approach in different situations (two closed sources, additive Gaussian noise with unknown spatial covariance, ...) especially over classical algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call