Abstract

A four-part partition game on a rectangle S I × S II is a two-person zero-sum game, where the strategy sets S I and S II are intervals and the rectangle is partitioned by three curves into four regions on each of which the payoff function is constant. These games generalize Silverman's game, where the boundary curves are of the form y= Tx, y= x and y= x/ T. In this paper it is shown that two increasing nonintersecting curves may be chosen arbitrarily and there is a uniquely determined third increasing curve such that if the payoffs are properly related, the game is isomorphic to Silverman's game.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.