Abstract

Broad area lasers (BALs) with external Fourier-optical cavities with spatial filter for transverse mode selection are investigated experimentally and numerically. Nearfield and farfield distributions are calculated and compared to experimental results. Two different BALs, one with a high (10%) and the other with a very low residual reflectivity of the output facet (facing the external resonator) are operated in external Fourier-optical 4f setups. For the BAL mentioned first, transverse mode selection is obtained at low pump currents; the emission of the fundamental or a specific higher order transverse mode can be stabilized. In the latter BAL transverse modes can be selectively excited up to pump currents more than 200% above laser threshold. Numerical calculations reveal, that if this BAL within an external 4f-cavity is pumped even higher above laser threshold, it starts to operate in a self-Q-switched mode. Pulse duration and repetition rates are in the range of 2-4ns and 100-200MHz, respectively. Also, the concept and technology for fabrication of compact, miniaturized hybrid integrated Fourier-optical external cavities based on polymer waveguide mirrors is described. Experimental results of transverse mode selection in BALs with hybrid integrated-optical cavities are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.