Abstract

AbstractGlow and filamentary regimes of atmospheric pressure plasma‐enhanced chemical vapor deposition in a planar dielectric barrier discharge configuration were compared for thin‐film deposition from ethyl lactate (EL). EL decomposition in the plasma phase and thin‐film composition were both characterized by Fourier‐transform infrared spectroscopy. EL chemical bonds' concentration along the gas flow decreases progressively in the glow dielectric barrier discharge (GDBD), whereas it drastically oscillates in the filamentary dielectric barrier discharge (FDBD), with values higher than that of the initial mixture. EL decomposition route depends on the discharge regime, as the decrease of the concentration of the different investigated bonds is different for an identical amount of energy provided to EL molecules. CO2 is systematically formed reaching concentrations of 25 and 40 ppm, respectively, in FDBD and GDBD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.