Abstract
Abstract In this study, we developed a multi-order, phase field model to compute the stress distributions in anisotropically elastic, inhomogeneous polycrystals and study stress-driven grain boundary migration. In particular, we included elastic contributions to the total free energy density and solved the multicomponent, nonconserved Allen–Cahn equations via the semi-implicit Fourier spectral method. Our analysis included specific cases related to bicrystalline planar and curved systems as well as polycrystalline systems with grain orientation and applied strain conditions. The evolution of the grain boundary confirmed the strong dependencies between grain orientation and applied strain conditions and the localized stresses were found to be maximum within grain boundary triple junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.