Abstract

The evolution of grain boundary (GB) networks in polycrystalline metals depends not only on the movement of the constituent GBs but also on the migration of GB triple junctions (TJs), the latter would have strong influence on the mechanical properties of polycrystals. We investigate the migration mechanism of TJs in face-centered cubic metals using molecular dynamics simulations. The TJ migration is revealed to follow a typical stick-slip behaviour that involves TJ grooving and coordinated GB migration. Upon external shear loading, the TJ experiences a quick migration process, resulting in a grooved TJ configuration with curved GBs at the TJ. The accumulation of dislocations at the TJ facilitates the TJ grooving process, since it compensates the angle gap caused by the inconsistent shear-migration coupling factors between the GBs. After reaching a critical grooving depth, the TJ migration is stagnated, while the connecting GBs begin to migrate via disconnections emitted from the TJ. Based on the mechanism of accumulated dislocation-initiated TJ migration, we propose an energetic model that considers the extra energy barrier for the accumulation of dislocations, to quantify the effect of GB misorientation on TJ migration. These findings deepen our understanding of the physical origin of TJ migration and point out the importance of dislocation accumulation on coordinated GB motion in nanocrystalline metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call