Abstract

The Fourier Grid Hamiltonian Multiconfigurational Self-Consistent-Field (FGH-MCSCF) method for calculating vibrational wavefunctions is presented. This method is designed to calculate multidimensional hydrogen nuclear wavefunctions for use in mixed quantum/classical molecular dynamics simulations of hydrogen transfer reactions. The FGH-MCSCF approach combines a MCSCF variational method, which describes the vibrational wavefunctions as linear combinations of configurations that are products of one-dimensional wavefunctions, with a Fourier grid method that represents the one-dimensional wavefunctions directly on a grid. In this method a full configuration interaction calculation is carried out in a truncated one-dimensional wavefunction space [analogous to complete active space self-consistent-field (CASSCF) in electronic structure theory]. A state-averaged approach is implemented to obtain a set of orthogonal multidimensional vibrational wavefunctions. The advantages of the FGH-MCSCF method are that it eliminates the costly calculation of multidimensional integrals, treats the entire range of the hydrogen coordinates without bias, avoids the expensive diagonalization of large matrices, and accurately describes ground and excited state hydrogen vibrational wavefunctions. This paper presents the derivation of the FGH-MCSCF method, as well as a series of test calculations on systems comparing its performance with exact diagonalization schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.