Abstract

An ab initio dipole moment function for ozone has been computed using the CASSCF (complete active space self-consistent field) method, and forms the basis for a calculation of ozone infrared band intensities. Vibrational wave functions were generated using the variational method with potential energy surfaces derived from experimental force constants. Computed values of the permanent dipole moment, dipole moment derivatives, and infrared band strengths are all found to be in remarkably good agreement with experiment. Intensities are predicted for hot bands for which experimental values are unavailable, and implications for atmospheric ozone spectroscopy are discussed. As the dipole moment matrix element signs are now established for nearly all of the observed bands, further refinement of the dipole moment function is possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call