Abstract
We define Jacobi Poincaré series over Cayley numbers and explicitly compute its Fourier coefficients. As an application, we obtain an estimate for the Fourier coefficients of a Jacobi cusp form. We also evaluate certain Petersson scalar products involving Jacobi cusp forms and Poincaré series. This evaluation yields certain special values of shifted convolution of Dirichlet series of Rankin-Selberg type associated to Jacobi cusp forms in consideration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have