Abstract

This paper describes the concept of a four-bar linkage mechanism for flapping wing micro air vehicles and outlines its design, implementation, and testing. Micro air vehicles (MAVs) are defined as flying vehicles ca. 150 mm in size (handheld), weighing 50–100 g, and are developed to reconnoiter in confined spaces (inside buildings, tunnels, etc.). For this application, insectlike flapping wings are an attractive solution and, hence, the need to realize the functionality of insect flight by engineering means. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forward and backward. During this motion, the wing tip approximately traces a figure eight and the wing changes the angle of attack (pitching) significantly. The aim of the work described here was to design and build an insectlike flapping mechanism on a 150 mm scale. The main purpose was not only to construct a test bed for aeromechanical research on hover in this mode of flight, but also to provide a precursor design for a future flapping-wing MAV. The mechanical realization was to be based on a four-bar linkage combined with a spatial articulation. Two instances of idealized figure eights were considered: (i) Bernoulli’s lemniscate and (ii) Watt’s sextic. The former was found theoretically attractive, but impractical, while the latter was both theoretically and practically feasible. This led to a combination of Watt’s straight-line mechanism with a drive train utilizing a Geneva wheel and a spatial articulation. The actual design, implementation, and testing of this concept are briefly described at the end of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call