Abstract
BackgroundAlzheimer’s disease (AD) is a neurodegenerative disorder with significant heterogeneity. Different AD phenotypes may be associated with specific brain network changes. Uncovering disease heterogeneity by using functional networks could provide insights into precise diagnoses. MethodsWe investigated the subtypes of AD using nonnegative matrix factorization clustering on the previously identified 216 resting-state functional connectivities that differed between AD and normal control subjects. We conducted the analysis using a discovery dataset (n = 809) and a validated dataset (n = 291). Next, we grouped individuals with mild cognitive impairment according to the model obtained in the AD groups. Finally, the clinical measures and brain structural characteristics were compared among the subtypes to assess their relationship with differences in the functional network. ResultsIndividuals with AD were clustered into 4 subtypes reproducibly, which included those with 1) diffuse and mild functional connectivity disruption (subtype 1), 2) predominantly decreased connectivity in the default mode network accompanied by an increase in the prefrontal circuit (subtype 2), 3) predominantly decreased connectivity in the anterior cingulate cortex accompanied by an increase in prefrontal cortex connectivity (subtype 3), and 4) predominantly decreased connectivity in the basal ganglia accompanied by an increase in prefrontal cortex connectivity (subtype 4). In addition to these differences in functional connectivity, differences between the AD subtypes were found in cognition, structural measures, and cognitive decline patterns. ConclusionsThese comprehensive results offer new insights that may advance precision medicine for AD and facilitate strategies for future clinical trials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have