Abstract
In the global energy transition context, climate crisis events are poised to reshape the energy market landscape, leading to pronounced upheavals and significantly increased risks in the global energy market. This paper focuses on the U.S. and employs quantile connectedness to analyse the spillover effects among climate policy uncertainty (CPU) and renewable and non-renewable energy from January 2013 to October 2023. The research outcomes indicate that the influence of the interconnected network of variables is more pronounced in extreme market conditions compared to average market conditions. In extreme conditions, non-renewable energy continues to serve as the primary transmitter, while CPU and renewable energy only transition to a transmitter role during specific periods. Consequently, the government should implement more proactive policy measures to optimise the energy consumption structure and progressively transition to renewable energy to achieve long-term environmental sustainability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have