Abstract

In this paper, a forward-backward pursuit method for distributed compressed sensing (DCSFBP) is proposed. In contrast to existing distributed compressed sensing (DCS), it is an adaptive iterative approach where each iteration consists of consecutive forward selection and backward removal stages. And it not needs sparsity as prior knowledge and multiple indices are identified at each iteration for recovery. These make it a potential candidate for many practical applications, when the sparsity of signals is not available. Numerical experiments, including recovery of random sparse signals with different nonzero coefficient distributions in many scenarios, in addition to the recovery of sparse image and the real-life electrocardiography (ECG) data, are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing DCS algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.